Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications.

نویسندگان

  • W Saurin
  • E Dassa
چکیده

Periplasmic binding protein-dependent transport systems are composed of a periplasmic substrate-binding protein, a set of 2 (sometimes 1) very hydrophobic integral membrane proteins, and 1 (sometimes 2) hydrophilic peripheral membrane protein that binds and hydrolyzes ATP. These systems are members of the superfamily of ABC transporters. We performed a molecular phylogenetic analysis of the sequences of 70 hydrophobic membrane proteins of these transport systems in order to investigate their evolutionary history. Proteins were grouped into 8 clusters. Within each cluster, protein sequences displayed significant similarities, suggesting that they derive from a common ancestor. Most clusters contained proteins from systems transporting analogous substrates such as monosaccharides, oligopeptides, or hydrophobic amino acids, but this was not a general rule. Proteins from diverse bacteria are found within each cluster, suggesting that the ancestors of current clusters were present before the divergence of bacterial groups. The phylogenetic trees computed for hydrophobic membrane proteins of these permeases are similar to those described for the periplasmic substrate-binding proteins. This result suggests that the genetic regions encoding binding protein-dependent permeases evolved as whole units. Based on the results of the classification of the proteins and on the reconstructed phylogenetic trees, we propose an evolutionary scheme for periplasmic permeases. According to this model, it is probable that these transport systems derive from an ancestral system having only 1 hydrophobic membrane protein.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extractability of Inner-Membrane Proteins from Salmonella typhimurium Intact Cells, Spheroplasts and Inner-Membrane Fragments by Non-Denaturing Detergents

The effect of Triton X-100, Na cholate and Tween 80 on the solubilization of integral membrane proteins in intact cells, spheroplasts and inner-membrane fragments of Salmonella typhimurium was studied. The detergents were used in various concentrations (1.6 to 64 mM) and cytochromes b and d were used as marker to monitor the solubilization of membrane-bound proteins. Results showed that no inne...

متن کامل

Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmic-binding-protein-dependent transport systems.

The products of the btuCED region of the Escherichia coli chromosome participate in the transport of vitamin B12 across the cytoplasmic membrane. The nucleotide sequence of the 3,410-base-pair HindIII-HincII DNA fragment carrying a portion of the himA gene and the entire btuCED region was determined. Comparison of the location of the open reading frames with the gene boundaries defined by trans...

متن کامل

Arabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases

The hydrophobic proteins of plant plasma membrane still remain largely unknown.  For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...

متن کامل

Functional exchangeability of the ABC proteins of the periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli.

The periplasmic binding protein-dependent transport systems Ugp and Mal of Escherichia coli transport sn-glycerol-3-phosphate and maltose, respectively. The UgpC and MalK proteins of these transport systems, which couple energy to the transport process by ATP-hydrolysis, are highly homologous, suggesting that they might be functionally exchangeable. Complementation experiments showed that UgpC ...

متن کامل

Targeting the inner nuclear membrane

Targeting the inner nuclear membrane roteins destined for the inner nuclear membrane (INM) start out in the peripheral ER. Diffusion from the ER will get them to the contiguous outer nuclear membrane (ONM), but the next step could involve either vesicular transport, short-lived fusions between INM and ONM, or movement along the lipid bilayers surrounding nuclear pores. On page 1051, Ohba et al....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 3 2  شماره 

صفحات  -

تاریخ انتشار 1994